Reversibly immortalization establishes a hair follicle stem cell line with hair follicle reconstruction ability

Author:

Xing Yizhan1,Xiang Fei2,Guo Haiying1,Gong Hao1,Li Yuhong1ORCID

Affiliation:

1. Department of Cell Biology Army Medical University Chongqing PR China

2. State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital Army Medical University Chongqing PR China

Abstract

AbstractHair follicle stem cells (HFSCs) play critical roles in the periodic regeneration of hair follicles. HFSCs are also a good model for stem cell biology research. However, no stable mouse HFSC cell line has been reported, which restricts the research and application of HFSCs. We isolated HFSCs from mouse hair follicles and immortalized them by inducing a reversible SV40 large T antigen. Through monoclonal screening, we identified a reversibly immortalized cell line, immortalized HFSC (iHFSC2). RNA sequencing, fluorescence‐activated cell sorting, western blotting and immunofluorescence experiments revealed that the expression patterns of iHFSC2 and HFSC were similar at the protein and mRNA levels. After that, iHFSC2s were passaged and morphologically monitored for up to 40 times to detect their long‐term culture potential. The long‐term cultured iHFSC2 could regenerate hair follicles with complete hair follicle structure and HFSCs in the bulge area. This work successfully established an HFSC cell line with the ability of hair follicle reconstruction.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Dermatology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3