Author:
Matsumura Yasuhiro,To Taiko Kim,Kunieda Takekazu,Kohno Hiroki,Kakutani Tetsuji,Kubo Takeo
Abstract
AbstractAmong hymenopteran insects, aculeate species such as bees, ants, and wasps have enlarged and morphologically elaborate mushroom bodies (MBs), a higher-order brain center in the insect, implying their relationship with the advanced behavioral traits of aculeate species. The molecular bases leading to the acquisition of complicated MB functions, however, remains unclear. We previously reported the constitutive and MB-preferential expression of an ecdysone-signaling related transcription factor, Mblk-1/E93, in the honey bee brain. Here, we searched for target genes of Mblk-1 in the worker honey bee MBs using chromatin immunoprecipitation sequence analyses and found that Mblk-1 targets several genes involved in synaptic plasticity, learning, and memory abilities. We also demonstrated that Mblk-1 expression is self-regulated via Mblk-1-binding sites, which are located upstream of Mblk-1. Furthermore, we showed that the number of the Mblk-1-binding motif located upstream of Mblk-1 homologs increased associated with evolution of hymenopteran insects. Our findings suggest that Mblk-1, which has been focused on as a developmental gene transiently induced by ecdysone, has acquired a novel expression pattern to play a role in synaptic plasticity in honey bee MBs, raising a possibility that molecular evolution of Mblk-1 may have partly contributed to the elaboration of MB function in insects.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference54 articles.
1. McGuire, S. E., Le, P. T. & Davis, R. L. The role of Drosophila mushroom body signaling in olfactory memory. Science 293, 1330–1333 (2001).
2. Mizunami, M., Weibrecht, J. M. & Strausfeld, N. J. Mushroom bodies of the cockroach: Their participation in place memory. J. Comp. Neurol. 402, 520–537 (1998).
3. Schildberger, K. Multimodal interneurons in the cricket brain: Properties of identified extrinsic mushroom body cells. J. Comp. Physiol. 154, 71–79 (1984).
4. Ben-Shahar, Y., Robichon, A., Sokolowski, M. B. & Robinson, G. E. Influence of gene action across different time scales on behavior. Science 296, 741–744 (2002).
5. Farris, S. M. & Schulmeister, S. Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc. Biol. Sci. 278, 940–951 (2011).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献