Using machine learning to determine the time of exposure to infection by a respiratory pathogen

Author:

Sharma Kartikay,Aminian Manuchehr,Ghosh Tomojit,Liu Xiaoyu,Kirby Michael

Abstract

AbstractGiven an infected host, estimating the time that has elapsed since initial exposure to the pathogen is an important problem in public health. In this paper we use longitudinal gene expression data from human challenge studies of viral respiratory illnesses for building predictive models to estimate the time elapsed since onset of respiratory infection. We apply sparsity driven machine learning to this time-stamped gene expression data to model the time of exposure by a pathogen and subsequent infection accompanied by the onset of the host immune response. These predictive models exploit the fact that the host gene expression profile evolves in time and its characteristic temporal signature can be effectively modeled using a small number of features. Predicting the time of exposure to infection to be in first 48 h after exposure produces BSR in the range of 80–90% on sequestered test data. A variety of machine learning experiments provide evidence that models developed on one virus can be used to predict exposure time for other viruses, e.g., H1N1, H3N2, and HRV. The interferon $$\alpha /\beta $$ α / β signaling pathway appears to play a central role in keeping time from onset of infection. Successful prediction of the time of exposure to a pathogen has potential ramifications for patient treatment and contact tracing.

Funder

Defense Advanced Research Projects Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3