A novel time-lapse imaging method for studying developing bacterial biofilms

Author:

Futo Momir,Široki Tin,Koska Sara,Čorak Nina,Tušar Anja,Domazet-Lošo Mirjana,Domazet-Lošo Tomislav

Abstract

AbstractIn nature, bacteria prevailingly reside in the form of biofilms. These elaborately organized surface-bound assemblages of bacterial cells show numerous features of multicellular organization. We recently showed that biofilm growth is a true developmental process, which resembles developmental processes in multicellular eukaryotes. To study the biofilm growth in a fashion of eukaryotic ontogeny, it is essential to define dynamics and critical transitional phases of this process. The first step in this endeavor is to record the gross morphological changes of biofilm ontogeny under standardized conditions. This visual information is instrumental in guiding the sampling strategy for the later omics analyses of biofilm ontogeny. However, none of the currently available visualizations methods is specifically tailored for recording gross morphology across the whole biofilm development. To address this void, here we present an affordable Arduino-based approach for time-lapse visualization of complete biofilm ontogeny using bright field stereomicroscopy with episcopic illumination. The major challenge in recording biofilm development on the air–solid interphase is water condensation, which compromises filming directly through the lid of a Petri dish. To overcome these trade-offs, we developed an Arduino microcontroller setup which synchronizes a robotic arm, responsible for opening and closing the Petri dish lid, with the activity of a stereomicroscope-mounted camera and lighting conditions. We placed this setup into a microbiological incubator that maintains temperature and humidity during the biofilm growth. As a proof-of-principle, we recorded biofilm development of five Bacillus subtilis strains that show different morphological and developmental dynamics.

Funder

Hrvatska Zaklada za Znanost

The European Regional Development Fund

Horizon 2020

Zaklada Adris

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3