Author:
Fontaine Amélie,Simard Anouk,Dubois Bryan,Dutel Julien,Elliott Kyle H.
Abstract
AbstractWildlife managers design artificial structures, such as bird houses and bat boxes, to provide alternative nesting and roosting sites that aid wildlife conservation. However, artificial structures for wildlife may not be equally efficient at all sites due to varying climate or habitat characteristics influencing thermal properties. For example, bat boxes are a popular measure employed to provide compensatory or supplementary roost sites for bats and educate the public. Yet, bat boxes are often thermally unstable or too cold to fulfill reproductive females needs in northern temperate environments. To help improve the thermodynamics of bat boxes, we tested the effect of (1) three mountings, (2) four orientations, and (3) twelve bat box designs on the internal temperature of bat boxes. We recorded temperatures in bat boxes across a climate gradient at seven sites in Quebec, Canada. Bat boxes mounted on buildings had warmer microclimates at night than those on poles and those facing east warmed sooner in the morning than those facing west or south. Our best new model based on passive solar architecture (Ncube PH1) increased the time in the optimal temperature range (22–40 °C) of targeted species by up to 13% compared to the most commonly used model (Classic 4-chamber) when mounted on a building with an east orientation (other designs presented in the Supplementary Information). Based on bioenergetic models, we estimated that bats saved up to 8% of their daily energy using the Ncube PH1 compared to the Classic 4-chamber when mounted on a building with an east orientation. We demonstrate that the use of energy-saving concepts from architecture can improve the thermal performance of bat boxes and potentially other wildlife structures as well.
Funder
Natural Sciences and Engineering Research Council of Canada
MEC
Fonds interministériel pour le rétablissement
Fonds Verts - PACC
Publisher
Springer Science and Business Media LLC
Reference94 articles.
1. Priddel, D. & Carlile, N. J. An artificial nest box for burrow-nesting seabirds. Emu-Austral Ornithol. 95, 290–294 (1995).
2. Burton, N. H., Evans, P. R. & Robinson, M. A. Effects on shorebird numbers of disturbance, the loss of a roost site and its replacement by an artificial island at Hartlepool, Cleveland. Biol. Conserv. 77, 193–201 (1996).
3. Chambers, C. L., Alm, V., Siders, M. S. & Rabe, M. J. Use of artificial roosts by forest-dwelling bats in northern Arizona. Wildl. Soc. B 30, 1085–1091 (2002).
4. Lausen, C. L. & Barclay, R. M. Benefits of living in a building: Big brown bats (Eptesicus fuscus) in rocks versus buildings. J. Mammal. 87, 362–370 (2006).
5. Kelm, D. H., Wiesner, K. R. & Helversen, O. V. Effects of artificial roosts for frugivorous bats on seed dispersal in a Neotropical forest pasture mosaic. Biol. Conserv. 22, 733–741 (2008).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献