Cellular and Exosomal MicroRNAs: Emerging Clinical Relevance as Targets for Breast Cancer Diagnosis and Prognosis

Author:

Zablon Faith Mokobi1ORCID,Desai Parth2,Dellinger Kristen1ORCID,Aravamudhan Shyam1ORCID

Affiliation:

1. Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering North Carolina, A&T State University 2907 E. Gate City Blvd Greensboro NC 27401 USA

2. Department of Nanoscience, Joint School of Nanoscience and Nanoengineering University of North Carolina 2904 E. Gate City Blvd Greensboro NC 27401 USA

Abstract

AbstractBreast cancer accounts for the highest cancer cases globally, with 12% of occurrences progressing to metastatic breast cancer with a low survival rate and limited effective early intervention strategies augmented by late diagnosis. Moreover, a low concentration of prognostic and predictive markers hinders disease monitoring. Circulating and exosomal microRNAs (miRNAs) have recently shown a considerable interplay in breast cancer, standing out as effective diagnostic and prognostic markers. The primary functions are as gene regulatory agents at the genetic and epigenetic levels. An array of dysregulated miRNAs stimulates cancer‐promoting mechanisms, activating oncogenes and controlling tumor‐suppressing genes and mechanisms. Exosomes are vastly studied extracellular vesicles, carrying, and transporting cargo, including noncoding RNAs with premier roles in oncogenesis. Translocation of miRNAs from the circulation to exosomes, with RNA‐binding proteins in stress‐induced conditions, has shown significant cooperation in function to promote breast cancer. This review examines cellular and exosomal miRNA biogenesis and loading, the clinical implications of their dysregulation, their function in diagnosis, prognosis, and prediction of breast cancer, and in regulating cancer signaling pathways. The influence of cellular and exosomal miRNAs presents clinical significance on breast cancer diagnosis, subtyping, staging, prediction, and disease monitoring during treatment, hence a potent marker for breast cancer.

Funder

National Institutes of Health

National Nanotechnology Coordinating Office

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3