Author:
Schwalm Christopher R.,Huntzinger Deborah N.,Michalak Anna M.,Schaefer Kevin,Fisher Joshua B.,Fang Yuanyuan,Wei Yaxing
Abstract
AbstractTerrestrial vegetation removes CO2 from the atmosphere; an important climate regulation service that slows global warming. This 119 Pg C per annum transfer of CO2 into plants—gross primary productivity (GPP)—is the largest land carbon flux globally. While understanding past and anticipated future GPP changes is necessary to support carbon management, the factors driving long-term changes in GPP are largely unknown. Here we show that 1901 to 2010 changes in GPP have been dominated by anthropogenic activity. Our dual constraint attribution approach provides three insights into the spatiotemporal patterns of GPP change. First, anthropogenic controls on GPP change have increased from 57% (1901 decade) to 94% (2001 decade) of the vegetated land surface. Second, CO2 fertilization and nitro gen deposition are the most important drivers of change, 19.8 and 11.1 Pg C per annum (2001 decade) respectively, especially in the tropics and industrialized areas since the 1970’s. Third, changes in climate have functioned as fertilization to enhance GPP (1.4 Pg C per annum in the 2001 decade). These findings suggest that, from a land carbon balance perspective, the Anthropocene began over 100 years ago and that global change drivers have allowed GPP uptake to keep pace with anthropogenic emissions.
Publisher
Springer Science and Business Media LLC
Reference45 articles.
1. Le Quéré, C. et al. Global Carbon Budget 2017, Earth Syst. Sci. Data 10, 405–448, https://doi.org/10.5194/essd-10-405-2018 (2018).
2. Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541(7638), 516–520 (2017).
3. Hegerl, G.C. et al. Good Practice Guidance Paper on Detection and Attribution Related to Anthropogenic Climate Change. In: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change [Stocker, T.F., C.B. Field, D. Qin, V. Barros, G.-K. Plattner, M. Tignor, P.M. Midgley, and K.L. Ebi (eds.)]. IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland, (2010).
4. Bellassen, V. et al. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Global Change Biology 17(11), 3274–3292 (2011).
5. Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO 2 and temperature. Nature Climate Change 9, 73–79 (2018).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献