Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network

Author:

Kurata Yasuhisa,Nishio Mizuho,Moribata Yusaku,Kido Aki,Himoto Yuki,Otani Satoshi,Fujimoto Koji,Yakami Masahiro,Minamiguchi Sachiko,Mandai Masaki,Nakamoto Yuji

Abstract

AbstractEndometrial cancer (EC) is the most common gynecological tumor in developed countries, and preoperative risk stratification is essential for personalized medicine. There have been several radiomics studies for noninvasive risk stratification of EC using MRI. Although tumor segmentation is usually necessary for these studies, manual segmentation is not only labor-intensive but may also be subjective. Therefore, our study aimed to perform the automatic segmentation of EC on MRI with a convolutional neural network. The effect of the input image sequence and batch size on the segmentation performance was also investigated. Of 200 patients with EC, 180 patients were used for training the modified U-net model; 20 patients for testing the segmentation performance and the robustness of automatically extracted radiomics features. Using multi-sequence images and larger batch size was effective for improving segmentation accuracy. The mean Dice similarity coefficient, sensitivity, and positive predictive value of our model for the test set were 0.806, 0.816, and 0.834, respectively. The robustness of automatically extracted first-order and shape-based features was high (median ICC = 0.86 and 0.96, respectively). Other high-order features presented moderate-high robustness (median ICC = 0.57–0.93). Our model could automatically segment EC on MRI and extract radiomics features with high reliability.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3