A deep learning framework for predicting endometrial cancer from cytopathologic images with different staining styles

Author:

Wang RuijieORCID,Li Qing,Shi Guizhi,Li Qiling,Zhong Dexing

Abstract

Endometrial cancer screening is crucial for clinical treatment. Currently, cytopathologists analyze cytopathology images is considered a popular screening method, but manual diagnosis is time-consuming and laborious. Deep learning can provide objective guidance efficiency. But endometrial cytopathology images often come from different medical centers with different staining styles. It decreases the generalization ability of deep learning models in cytopathology images analysis, leading to poor performance. This study presents a robust automated screening framework for endometrial cancer that can be applied to cytopathology images with different staining styles, and provide an objective diagnostic reference for cytopathologists, thus contributing to clinical treatment. We collected and built the XJTU-EC dataset, the first cytopathology dataset that includes segmentation and classification labels. And we propose an efficient two-stage framework for adapting different staining style images, and screening endometrial cancer at the cellular level. Specifically, in the first stage, a novel CM-UNet is utilized to segment cell clumps, with a channel attention (CA) module and a multi-level semantic supervision (MSS) module. It can ignore staining variance and focus on extracting semantic information for segmentation. In the second stage, we propose a robust and effective classification algorithm based on contrastive learning, ECRNet. By momentum-based updating and adding labeled memory banks, it can reduce most of the false negative results. On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. Our method robustly predicts endometrial cancer on cytopathologic images with different staining styles, which will further advance research in endometrial cancer screening and provide early diagnosis for patients. The code will be available on GitHub.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Special Project for Technological Innovation Guidance of Shaanxi Province

Publisher

Public Library of Science (PLoS)

Reference69 articles.

1. Clinical actionability of molecular targets in endometrial cancer;ME Urick;Nature Reviews Cancer,2019

2. Adjuvant radiotherapy for stage I endometrial cancer;A Kong;Cochrane Database Syst Rev,2012

3. Malignant Tumors of the Female Reproductive System

4. International patterns and trends in endometrial cancer incidence, 1978–2013;J Lortet-Tieulent;JNCI: Journal of the National Cancer Institute,2018

5. Risk factors for endometrial cancer: An umbrella review of the literature;O Raglan;International Journal of Cancer,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3