Alpha-ketoglutarate utilization in Saccharomyces cerevisiae: transport, compartmentation and catabolism

Author:

Zhang Jinrui,van den Herik Bas Mees,Wahl Sebastian Aljoscha

Abstract

Abstractα-Ketoglutarate (αKG) is a metabolite of the tricarboxylic acid cycle, important for biomass synthesis and a precursor for biotechnological products like 1,4-butanediol. In the eukaryote Saccharomyces cerevisiae αKG is present in different compartments. Compartmentation and (intra-)cellular transport could interfere with heterologous product pathways, generate futile cycles and reduce product yields. Batch and chemostat cultivations at low pH (≤ 5) showed that αKG can be transported, catabolized and used for biomass synthesis. The uptake mechanism of αKG was further investigated under αKG limited chemostat conditions at different pH (3, 4, 5, and 6). At very low pH (3, 4) there is a fraction of undissociated αKG that could diffuse over the periplasmic membrane. At pH 5 this fraction is very low, and the observed growth and residual concentration requires a permease/facilitated uptake mechanism of the mono-dissociated form of αKG. Consumption of αKG under mixed substrate conditions was only observed for low glucose concentrations in chemostat cultivations, suggesting that the putative αKG transporter is repressed by glucose. Fully 13C-labeled αKG was introduced as a tracer during a glucose/αKG co-feeding chemostat to trace αKG transport and utilization. The measured 13C enrichments suggest the major part of the consumed 13C αKG was used for the synthesis of glutamate, and the remainder was transported into the mitochondria and fully oxidized. There was no enrichment observed in glycolytic intermediates, suggesting that there was no gluconeogenic activity under the co-feeding conditions. 13C based flux analysis suggests that the intracellular transport is bi-directional, i.e. there is a fast exchange between the cytosol and mitochondria. The model further estimates that most intracellular αKG (88%) was present in the cytosol. Using literature reported volume fractions, the mitochondria/cytosol concentration ratio was 1.33. Such ratio will not require energy investment for transport towards the mitochondria (based on thermodynamic driving forces calculated with literature pH values). Growth on αKG as sole carbon source was observed, suggesting that S. cerevisiae is not fully Krebs-negative. Using 13C tracing and modelling the intracellular use of αKG under co-feeding conditions showed a link with biomass synthesis, transport into the mitochondria and catabolism. For the engineering of strains that use cytosolic αKG as precursor, both observed sinks should be minimized to increase the putative yields.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3