Abstract
AbstractA fascinating class of familial paraganglioma (PGL) neuroendocrine tumors is driven by loss of the tricarboxylic acid (TCA) cycle enzyme succinate dehydrogenase (SDH) resulting in succinate accumulation as an oncometabolite, and other metabolic derangements. Here we exploit a S. cerevisiae yeast model of SDH loss where accumulating succinate, and possibly reactive oxygen species, poison a dioxygenase enzyme required for sulfur scavenging. Using this model we performed a chemical suppression screen for compounds that relieve dioxygenase inhibition. After testing 1280 pharmaceutically-active compounds we identified meclofenoxate HCL, and its hydrolysis product, dimethylaminoethanol (DMAE), as suppressors of dioxygenase intoxication in SDH-loss cells. We show that DMAE acts to alter metabolism so as to normalize the succinate:2-ketoglutarate ratio, improving dioxygenase function. This work raises the possibility that oncometabolite effects might be therapeutically suppressed by drugs that rewire metabolism to reduce the flux of carbon into pathological metabolic pathways.
Publisher
Cold Spring Harbor Laboratory