Spatial deformable transformer for 3D point cloud registration

Author:

Xiong Fengguang,Kong Yu,Xie Shuaikang,Kuang Liqun,Han Xie

Abstract

AbstractDeformable attention only focuses on a small group of key sample-points around the reference point and make itself be able to capture dynamically the local features of input feature map without considering the size of the feature map. Its introduction into point cloud registration will be quicker and easier to extract local geometric features from point cloud than attention. Therefore, we propose a point cloud registration method based on Spatial Deformable Transformer (SDT). SDT consists of a deformable self-attention module and a cross-attention module where the deformable self-attention module is used to enhance local geometric feature representation and the cross-attention module is employed to enhance feature discriminative capability of spatial correspondences. The experimental results show that compared to state-of-the-art registration methods, SDT has a better matching recall, inlier ratio, and registration recall on 3DMatch and 3DLoMatch scene, and has a better generalization ability and time efficiency on ModelNet40 and ModelLoNet40 scene.

Funder

National Natural Science Foundation of China

Shanxi Province Science and Technology Major Special Plan "Unveiling and Leading" Project

Shanxi Provincial Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3