3D reconstruction system and multiobject local tracking algorithm designed for billiards

Author:

Rodriguez-Lozano Francisco J.ORCID,Gámez-Granados Juan C.,Martínez Héctor,Palomares Jose M.,Olivares Joaquín

Abstract

AbstractThe use of virtual reality or augmented reality systems in billiards sports are useful tools for pure entertainment or improving the player’s skills. Depending on the purpose of these systems, tracking algorithms based on computer vision must be used. These algorithms are especially useful in systems aiming to reconstruct the trajectories followed by the balls after a strike. However, depending on the billiard modality, the problem of tracking multiple small identical objects, such as balls, is a complex task. In addition, when an amateur or nontop professional player uses low-frame-rate and low-resolution devices, problems such as blurred balls, blurred contours, or fuzzy edges, among others, arise. These effects have a negative impact on ball-tracking accuracy and reconstruction quality. Thus, this work proposes two contributions. The first contribution is a new tracking algorithm called “multiobject local tracking (MOLT)”. This algorithm can track balls with high precision and accuracy even with motion blur caused by low-resolution and low-frame-rate devices. Moreover, the proposed MOLT algorithm is compared with nine tracking methods and four different metrics, outperforming the rest of the methods in the majority of the cases and providing a robust solution. The second contribution is a whole system to track (using the MOLT algorithm) and reconstruct the movements of the balls on a billiard table in a 3D virtual world using computer vision. The proposed system covers all steps from image capture to 3D reconstruction. The 3D reconstruction results have been qualitatively evaluated by different users through a series of questionnaires, obtaining an overall score of 7.6 (out of 10), which indicates that the system is a promising and useful tool for training. Finally, both the MOLT algorithm and the reconstruction system are tested in three billiard modalities: blackball, carom billiards, and snooker.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3