Pioneering evaluation of GaN transistors in geostationary satellites

Author:

Mostardinha Hugo,Matos Diogo,Carvalho Nuno Borges,Sampaio Jorge,Pinto Marco,Gonçalves Patricia,Sousa Tiago,Kurpas Paul,Wuerfl Joachim,Barnes Andrew,Garat François,Poivey Christian

Abstract

AbstractIn this paper, we present the results of a 6-year experiment in space that studied the effects of radiation in Gallium Nitride (GaN) electronics in geostationary orbit. Four GaN transistors in a Colpitts oscillator configuration were flown in the Component Technology Test-Bed aboard the Alphasat telecommunication satellite. A heuristic analysis was performed by observing the variation in the power output of the oscillators with the total ionizing dose gathered during the mission. The total ionizing dose was measured with a Radiation Sensing Field Effect Transistors (RadFET) placed close to the GaN devices. The experiment showed that GaN is a robust technology that can be used in the space radiation environment of a geostationary orbit. The work presented here starts with a brief introduction of the subject, the motivation, and the main goal. This is followed by the description of the experimental setup, including the details of the oscillator design and simulations, as well as the implementation of the test-bed and the Components Technology Test-Bed. Finally, the results obtained during the 6 years of experience in space are discussed.

Funder

European Space Agency

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3