Author:
Gaymann Audrey,Montomoli Francesco
Abstract
Abstract
This paper shows the application of Deep Neural Network algorithms for Fluid-Structure Topology Optimization. The strategy offered is a new concept which can be added to the current process used to study Topology Optimization with Cellular Automata, Adjoint and Level-Set methods. The design space is described by a computational grid where every cell can be in two states: fluid or solid. The system does not require human intervention and learns through an algorithm based on Deep Neural Network and Monte Carlo Tree Search. In this work the objective function for the optimization is an incompressible fluid solver but the overall optimization process is independent from the solver. The test case used is a standard duct with back facing step where the optimizer aims at minimizing the pressure losses between inlet and outlet. The results obtained with the proposed approach are compared to the solution via a classical adjoint topology optimization code.
Funder
Engineering and Physical Sciences Research Council
Imperial College London
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献