An adjoint‐based solver with adaptive mesh refinement for efficient design of coupled thermal‐fluid systems

Author:

Gallorini Emanuele1ORCID,Hèlie Jerome2,Piscaglia Federico1ORCID

Affiliation:

1. Department of Aerospace Science and Technology (DAER) Politecnico di Milano Milan Italy

2. Vitesco Technologies Toulouse Cedex 1 France

Abstract

AbstractA multi‐objective continuous adjoint strategy based on the superposition of boundary functions for topology optimization of problems where the heat transfer must be enhanced and the dissipated mechanical power controlled at the same time, has been here implemented in a finite volume (FV), incompressible, steady flow solver supporting a dynamic adaptive mesh refinement (AMR) strategy. The solver models the transition from fluid to solid by a porosity field, that appears in the form of penalization in the momentum equation; the material distribution is optimized by the method of moving asymptotes (MMA). AMR is based on a hierarchical nonconforming h‐refinement strategy and is applied together with a flux correction to enforce conservation across topology changes. It is shown that a proper choice of the refinement criterium favors a mesh‐independent solution. Finally, a Pareto front built from the components of the objective function is used to find the best combination of the weights in the optimization cycle. Numerical experiments on two‐ and three‐dimensional test cases, including the aero‐thermal optimization of a simplified layout of a cooling system, have been used to validate the implemented methodology.

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3