Saltwater intrusion indirectly intensifies Phragmites australis invasion via alteration of soil microbes

Author:

Schroeder Carolyn S.,Kulick Nelle K.,Farrer Emily C.

Abstract

AbstractAlthough global change clearly influences species invasion, the exact mechanisms by which global change either intensifies or limits invasive spread remain elusive. Global change can affect invasion directly by altering abiotic conditions, as well as indirectly by altering the abundance and composition of interacting species. Here we examine the relative impacts of direct effects of saltwater intrusion and indirect effects via microbial interactions on the expansion of a model invasive plant species, Phragmites australis, in freshwater marshes of coastal Louisiana. Using a mesocosm experiment, we found that overall salinity strongly increases invasion, but the direction and magnitude of direct and indirect effects were context dependent. Indirect effects of salinity, via alterations in soil microbial composition, increased invasive performance when grown in monoculture and decreased native performance in native-only communities. However, when P. australis and natives were grown together, microbial indirect effects were not important; rather the salinity treatment increased P. australis invasion through reduction of native plant growth. Results suggest that salinity-induced alteration of soil microbes will increase susceptibility of native communities to invasion and promote P. australis monoculture expansion in later stages of invasion; whereas non-microbial effects of salinity are more important in early stages of invasion when P. australis is competing with native species. More broadly, these results underscore the importance of considering microbially-mediated indirect effects of global change in investigating the long-term outcomes of plant species interactions.

Funder

U.S. Department of Agriculture

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3