Experimentally Induced Dieback Conditions Limit Phragmites australis Growth

Author:

Bickford Wesley A.1ORCID,Snow Danielle S.2,Smith McKenzie K. H.3,Kingsley Kathryn L.4,White James F.4ORCID,Kowalski Kurt P.1ORCID

Affiliation:

1. Great Lakes Science Center, U.S. Geological Survey, 1451 Green Road, Ann Arbor, MI 48105, USA

2. Akima Systems Engineering, Herndon, VA 20171, USA

3. Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA

4. Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA

Abstract

Phragmites australis is a cosmopolitan grass species common in wetland ecosystems across the world. In much of North America, the non-native subspecies of Phragmites threatens wetland biodiversity, hinders recreation, and is a persistent problem for natural resource managers. In other parts of the world, populations are in decline, as Reed Die-Back Syndrome (RDBS) plagues some Phragmites stands in its native range. RDBS is defined by a clumped growth form, stunted root and shoot growth, premature senescence, and shoot death. RDBS has been associated with a build-up of short-chain fatty acids (SCFAs) and altered bacterial and oomycete communities in soils, but the exact causes are unknown. To control invasive Phragmites populations, we sought to develop treatments that mimic the conditions of RDBS. We applied various SCFA treatments at various concentrations to mesocosm soils growing either Phragmites or native wetland plants. We found that the high-concentration SCFA treatments applied weekly induced strong significant declines in above- and belowground biomass of Phragmites. Declines were significant but slightly weaker in native species. In addition, soil bacterial abundance increased, diversity decreased, and bacterial community composition significantly differed following treatments, such that treated pots maintained a higher relative abundance of Pseudomonadaceae and fewer Acidobacteriaceae than untreated pots. Our results suggest that application of SCFAs to Phragmites can lead to stunted plants and altered soil bacterial communities similar to populations affected by RDBS. However, the lack of species-specificity and intensive application rate may not make this treatment ideal as a widespread management tool.

Funder

Great Lakes Restoration Initiative

U.S. Geological Survey

USDA

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3