AUCReshaping: improved sensitivity at high-specificity

Author:

Bhat Sheethal,Mansoor Awais,Georgescu Bogdan,Panambur Adarsh B.,Ghesu Florin C.,Islam Saahil,Packhäuser Kai,Rodríguez-Salas Dalia,Grbic Sasa,Maier Andreas

Abstract

AbstractThe evaluation of deep-learning (DL) systems typically relies on the Area under the Receiver-Operating-Curve (AU-ROC) as a performance metric. However, AU-ROC, in its holistic form, does not sufficiently consider performance within specific ranges of sensitivity and specificity, which are critical for the intended operational context of the system. Consequently, two systems with identical AU-ROC values can exhibit significantly divergent real-world performance. This issue is particularly pronounced in the context of anomaly detection tasks, a commonly employed application of DL systems across various research domains, including medical imaging, industrial automation, manufacturing, cyber security, fraud detection, and drug research, among others. The challenge arises from the heavy class imbalance in training datasets, with the abnormality class often incurring a considerably higher misclassification cost compared to the normal class. Traditional DL systems address this by adjusting the weighting of the cost function or optimizing for specific points along the ROC curve. While these approaches yield reasonable results in many cases, they do not actively seek to maximize performance for the desired operating point. In this study, we introduce a novel technique known as AUCReshaping, designed to reshape the ROC curve exclusively within the specified sensitivity and specificity range, by optimizing sensitivity at a predetermined specificity level. This reshaping is achieved through an adaptive and iterative boosting mechanism that allows the network to focus on pertinent samples during the learning process. We primarily investigated the impact of AUCReshaping in the context of abnormality detection tasks, specifically in Chest X-Ray (CXR) analysis, followed by breast mammogram and credit card fraud detection tasks. The results reveal a substantial improvement, ranging from 2 to 40%, in sensitivity at high-specificity levels for binary classification tasks.

Funder

Siemens Healthineers

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3