A multimodal approach to cross-lingual sentiment analysis with ensemble of transformer and LLM

Author:

Miah Md Saef Ullah,Kabir Md Mohsin,Sarwar Talha Bin,Safran Mejdl,Alfarhood Sultan,Mridha M. F.

Abstract

AbstractSentiment analysis is an essential task in natural language processing that involves identifying a text’s polarity, whether it expresses positive, negative, or neutral sentiments. With the growth of social media and the Internet, sentiment analysis has become increasingly important in various fields, such as marketing, politics, and customer service. However, sentiment analysis becomes challenging when dealing with foreign languages, particularly without labelled data for training models. In this study, we propose an ensemble model of transformers and a large language model (LLM) that leverages sentiment analysis of foreign languages by translating them into a base language, English. We used four languages, Arabic, Chinese, French, and Italian, and translated them using two neural machine translation models: LibreTranslate and Google Translate. Sentences were then analyzed for sentiment using an ensemble of pre-trained sentiment analysis models: Twitter-Roberta-Base-Sentiment-Latest, bert-base-multilingual-uncased-sentiment, and GPT-3, which is an LLM from OpenAI. Our experimental results showed that the accuracy of sentiment analysis on translated sentences was over 86% using the proposed model, indicating that foreign language sentiment analysis is possible through translation to English, and the proposed ensemble model works better than the independent pre-trained models and LLM.

Funder

King Saud University, Saudi Arabia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3