Recommended implementation of electrical resistance tomography for conductivity mapping of metallic nanowire networks using voltage excitation

Author:

Cultrera Alessandro,Milano Gianluca,De Leo Natascia,Ricciardi Carlo,Boarino Luca,Callegaro Luca

Abstract

AbstractThe knowledge of the spatial distribution of the electrical conductivity of metallic nanowire networks (NWN) is important for tailoring the performance in applications. This work focuses on Electrical Resistance Tomography (ERT), a technique that maps the electrical conductivity of a sample from several resistance measurements performed on its border. We show that ERT can be successfully employed for NWN characterisation if a dedicated measurement protocol is employed. When applied to other materials, ERT measurements are typically performed with a constant current excitation; we show that, because of the peculiar microscopic structure and behaviour of metallic NWN, a constant voltage excitation protocols is preferable. This protocol maximises the signal to noise ratio in the resistance measurements—and thus the accuracy of ERT maps—while preventing the onset of sample alterations.

Funder

European Association of National Metrology Institutes

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ferroelastic twin walls for neuromorphic device applications;Frontiers in Materials;2024-08-14

2. Nano Engineering Concepts, Principles and Applications in Food Technology;Nanoelectronics Devices: Design, Materials, and Applications Part II;2023-11-26

3. Mackey-Glass Time Series Forecasting by Nanowire Networks;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

4. Tomography of memory engrams in self-organizing nanowire connectomes;Nature Communications;2023-09-27

5. Tomography of memory engrams in self-organizing nanowire connectomes;2023-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3