Tomography of memory engrams in self-organizing nanowire connectomes

Author:

Ricciardi Carlo1ORCID,Milano Gianluca2ORCID,Cultrera Alessandro2,Boarino Luca3,Callegaro Luca4ORCID

Affiliation:

1. Politecnico di Torino

2. INRIM

3. Istituto Nazionale di Ricerca Metrologica

4. INRIM, Istituto Nazionale di Ricerca Metrologica

Abstract

Abstract Self-organizing memristive nanowire connectomes have been exploited for physical (in materia) implementation of brain-inspired computing paradigms. Despite the emergent behavior was shown to rely on weight plasticity at single junction/synapse level and wiring plasticity involving topological changes, a shift to multiterminal paradigms is needed to unveil dynamics at the network level. Here, we report on tomographical evidence of memory engrams(or memory traces) in nanowire connectomes, i.e., chemical and physical changes in biological neural substrates supposed to endow the representation of experience stored in the brain. An experimental/modeling approach shows that spatially correlated short-term plasticity effects can turn into long-lasting engram memory patterns inherently related to network topology inhomogeneities. The ability to exploit both encoding and consolidation of information on the same physical substrate would open radically new perspectives for in materiacomputing, while offering to neuroscientists an alternative platform to understand the role of memory in learning and knowledge.

Publisher

Research Square Platform LLC

Reference47 articles.

1. Betzel, R. F. Network neuroscience and the connectomics revolution. in Connectomic Deep Brain Stimulation 25–58 (Elsevier, 2022). doi:10.1016/B978-0-12-821861-7.00002-6.

2. Multi-scale brain networks;Betzel RF;Neuroimage,2017

3. Complex brain networks: graph theoretical analysis of structural and functional systems;Bullmore E;Nat Rev Neurosci,2009

4. Measuring macroscopic brain connections in vivo;Jbabdi S;Nat Neurosci,2015

5. Toga, A. W., Clark, K. A., Thompson, P. M., Shattuck, D. W. & Van Horn, J. D. Mapping the Human Connectome. Neurosurgery 71, 1–5 (2012).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3