Mechanistic insights into the deleterious roles of Nasu-Hakola disease associated TREM2 variants

Author:

Dash RajuORCID,Choi Ho Jin,Moon Il SooORCID

Abstract

AbstractRecently, the critical roles played by genetic variants of TREM2 (Triggering Receptor Expressed on Myeloid cells 2) in Alzheimer’s disease have been aggressively highlighted. However, few studies have focused on the deleterious roles of Nasu-Hakola disease (NHD) associated TREM2 variants. In order to get insights into the contributions made by these variants to neurodegeneration, we investigated the influences of four NHD associated TREM2 mutations (Y38C, W50C, T66M, and V126G) on loss-of-function, and followed this with in silico prediction and conventional molecular dynamics simulation. NHD mutations were predicted to be highly deleterious by eight different in silico bioinformatics tools and found to induce conformational changes by molecular dynamics simulation. As compared with the wild-type, the four variants produced substantial differences in the collective motions of loop regions, which not only promoted structural remodeling in the CDR2 (complementarity-determining region 2) loop but also in the CDR1 loop, by changing inter- and intra-loop hydrogen bonding networks. In addition, structural studies in a free energy landscape analysis showed that Y38, T66, and V126 are crucial for maintaining the structural features of CDR1 and CDR2 loops, and that mutations in these positions produced steric clashes and loss of ligand binding. These results showed the presence of mutations in the TREM2 ectodomain induced flexibility and caused structural alterations. Dynamical scenarios, as provided by the present study, may be critical to our understanding of the roles of these TREM2 mutations in neurodegenerative diseases.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3