Dysgraphia detection through machine learning

Author:

Drotár PeterORCID,Dobeš Marek

Abstract

AbstractDysgraphia, a disorder affecting the written expression of symbols and words, negatively impacts the academic results of pupils as well as their overall well-being. The use of automated procedures can make dysgraphia testing available to larger populations, thereby facilitating early intervention for those who need it. In this paper, we employed a machine learning approach to identify handwriting deteriorated by dysgraphia. To achieve this goal, we collected a new handwriting dataset consisting of several handwriting tasks and extracted a broad range of features to capture different aspects of handwriting. These were fed to a machine learning algorithm to predict whether handwriting is affected by dysgraphia. We compared several machine learning algorithms and discovered that the best results were achieved by the adaptive boosting (AdaBoost) algorithm. The results show that machine learning can be used to detect dysgraphia with almost 80% accuracy, even when dealing with a heterogeneous set of subjects differing in age, sex and handedness.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision transformer-based model for early detection of dysgraphia among school students;Microsystem Technologies;2024-08-12

2. Development of potential dysgraphia handwriting dataset;Data in Brief;2024-06

3. Automated systems for diagnosis of dysgraphia in children: a survey and novel framework;International Journal on Document Analysis and Recognition (IJDAR);2024-04-15

4. Automated Detection of Dysgraphia Symptoms In Primary and Middle School Children;2024 International Conference on Emerging Smart Computing and Informatics (ESCI);2024-03-05

5. Deep Learning for Dyslexia Detection: A Comprehensive CNN Approach with Handwriting Analysis and Benchmark Comparisons;Journal of Disability Research;2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3