Automated systems for diagnosis of dysgraphia in children: a survey and novel framework

Author:

Kunhoth Jayakanth,Al-Maadeed Somaya,Kunhoth Suchithra,Akbari Younes,Saleh Moutaz

Abstract

AbstractLearning disabilities, which primarily interfere with basic learning skills such as reading, writing, and math, are known to affect around 10% of children in the world. The poor motor skills and motor coordination as part of the neurodevelopmental disorder can become a causative factor for the difficulty in learning to write (dysgraphia), hindering the academic track of an individual. The signs and symptoms of dysgraphia include but are not limited to irregular handwriting, improper handling of writing medium, slow or labored writing, unusual hand position, etc. The widely accepted assessment criterion for all types of learning disabilities including dysgraphia has traditionally relied on examinations conducted by medical expert. However, in recent years, artificial intelligence has been employed to develop diagnostic systems for learning disabilities, utilizing diverse modalities of data, including handwriting analysis. This work presents a review of the existing automated dysgraphia diagnosis systems for children in the literature. The main focus of the work is to review artificial intelligence-based systems for dysgraphia diagnosis in children. This work discusses the data collection method, important handwriting features, and machine learning algorithms employed in the literature for the diagnosis of dysgraphia. Apart from that, this article discusses some of the non-artificial intelligence-based automated systems. Furthermore, this article discusses the drawbacks of existing systems and proposes a novel framework for dysgraphia diagnosis and assistance evaluation.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision transformer-based model for early detection of dysgraphia among school students;Microsystem Technologies;2024-08-12

2. Artificial Robotic Material (ARM) – A Supporting Gadget for the Disabled;2024 International Conference on Communication, Computing and Internet of Things (IC3IoT);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3