A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference
Author:
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Instrumentation,Electronic, Optical and Magnetic Materials
Link
https://www.nature.com/articles/s41928-023-01010-1.pdf
Reference55 articles.
1. Murmann, B. Mixed-signal computing for deep neural network inference. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 29, 3–13 (2021).
2. Shafiee, A. et al. ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. in 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA) 14–26 (IEEE Press, 2016).
3. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).
4. Yu, S., Jiang, H., Huang, S., Peng, X. & Lu, A. Compute-in-memory chips for deep learning: recent trends and prospects. IEEE Circuits Syst. Magazine 21, 31–56 (2021).
5. Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).
Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Self-rectifying NiOX/WOX heterojunction synaptic memristor for crossbar architectured reservoir computing system;Journal of Alloys and Compounds;2024-10
2. Which Coupled is Best Coupled? An Exploration of AIMC Tile Interfaces and Load Balancing for CNNs;IEEE Transactions on Parallel and Distributed Systems;2024-10
3. Capacitance and Conductance Compensation Methods for Efficient Computing‐In‐Memory Designs;Advanced Electronic Materials;2024-09-06
4. Improving model robustness to weight noise via consistency regularization;Machine Learning: Science and Technology;2024-09-01
5. Synaptogen: A Cross-Domain Generative Device Model for Large-Scale Neuromorphic Circuit Design;IEEE Transactions on Electron Devices;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3