Abstract
AbstractThe widening application of advanced digital infrastructure requires the development of communications technologies with increased data transmission rates. However, ensuring that this can be achieved in an energy-efficient way is challenging. Here we report an integrated complementary metal–oxide–semiconductor/silicon-photonics-based transmitter in which a switching current is applied to the passive-equalization-network-guided silicon Mach–Zehnder modulator, rather than driving a standard Mach–Zehnder modulator with a traditional voltage swing. This approach allows the total electrical energy to be selectively distributed to different frequency components by choosing an appropriate inductance and near-end termination impedance values. With the approach, we achieve 112 gigabaud—112 gigabits per second on–off keying and 224 gigabit per second pulse-amplitude modulation with four levels—transmission with energy efficiencies below picojoules per bit, and without the need for signal-shaping functions in the data source. We also investigate the bit error rate for different electrical and optical power conditions at 100 gigabaud, including the electrical power consumption of the driver amplifier.
Funder
RCUK | Engineering and Physical Sciences Research Council
Royal Society
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Instrumentation,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献