Ocular biomarkers: useful incidental findings by deep learning algorithms in fundus photographs

Author:

Martin EveORCID,Cook Angus G.,Frost Shaun M.,Turner Angus W.ORCID,Chen Fred K.ORCID,McAllister Ian L.,Nolde Janis M.,Schlaich Markus P.

Abstract

Abstract Background/Objectives Artificial intelligence can assist with ocular image analysis for screening and diagnosis, but it is not yet capable of autonomous full-spectrum screening. Hypothetically, false-positive results may have unrealized screening potential arising from signals persisting despite training and/or ambiguous signals such as from biomarker overlap or high comorbidity. The study aimed to explore the potential to detect clinically useful incidental ocular biomarkers by screening fundus photographs of hypertensive adults using diabetic deep learning algorithms. Subjects/Methods Patients referred for treatment-resistant hypertension were imaged at a hospital unit in Perth, Australia, between 2016 and 2022. The same 45° colour fundus photograph selected for each of the 433 participants imaged was processed by three deep learning algorithms. Two expert retinal specialists graded all false-positive results for diabetic retinopathy in non-diabetic participants. Results Of the 29 non-diabetic participants misclassified as positive for diabetic retinopathy, 28 (97%) had clinically useful retinal biomarkers. The models designed to screen for fewer diseases captured more incidental disease. All three algorithms showed a positive correlation between severity of hypertensive retinopathy and misclassified diabetic retinopathy. Conclusions The results suggest that diabetic deep learning models may be responsive to hypertensive and other clinically useful retinal biomarkers within an at-risk, hypertensive cohort. Observing that models trained for fewer diseases captured more incidental pathology increases confidence in signalling hypotheses aligned with using self-supervised learning to develop autonomous comprehensive screening. Meanwhile, non-referable and false-positive outputs of other deep learning screening models could be explored for immediate clinical use in other populations.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3