Author:
Xing Jiangwa,Toh Yi-Chin,Xu Shuoyu,Yu Hanry
Abstract
Abstract
Unintended exposure to teratogenic compounds can lead to various birth defects; however current animal-based testing is limited by time, cost and high inter-species variability. Here, we developed a human-relevant in vitro model, which recapitulated two cellular events characteristic of embryogenesis, to identify potentially teratogenic compounds. We spatially directed mesoendoderm differentiation, epithelial-mesenchymal transition and the ensuing cell migration in micropatterned human pluripotent stem cell (hPSC) colonies to collectively form an annular mesoendoderm pattern. Teratogens could disrupt the two cellular processes to alter the morphology of the mesoendoderm pattern. Image processing and statistical algorithms were developed to quantify and classify the compounds’ teratogenic potential. We not only could measure dose-dependent effects but also correctly classify species-specific drug (Thalidomide) and false negative drug (D-penicillamine) in the conventional mouse embryonic stem cell test. This model offers a scalable screening platform to mitigate the risks of teratogen exposures in human.
Publisher
Springer Science and Business Media LLC
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献