Self-organized anteroposterior regionalization of early midbrain and hindbrain using micropatterned human embryonic stem cells

Author:

Xie TianfaORCID,Brown Lauren E.,Pak ChangHui,Sun YubingORCID

Abstract

SUMMARYTo develop into the central nervous system, neuroepithelial cells must first form a neural tube consisting of a series of patterned neural progenitor cells along the anterior-posterior (AP) axis. Based on studies using model organisms, it has been revealed that AP spatial regionalization is dominated by gradients of morphogens that regulate retinoic acid (RA), sonic hedgehog (SHH), bone morphogenetic proteins (BMPs), and Wingless/int1 (WNT) signaling pathways. Recently, human pluripotent stem cells (hPSCs) were successfully induced into a patterned neural tissue with differential AP gene expression levels by a gradient of WNT activity controlled by a microfluidic device. However, the midbrain and hindbrain boundaries were not as sharp as observed in vivo, likely due to the lack of additional important morphogenic factors, such as RA and SHH. Here, we induced micropatterned hPSCs into AP patterned neural tissue by activating not only WNT but also RA and SHH signals under fully defined culture conditions. We found that hPSCs self-organized into spatially patterned midbrain (FOXG1-OTX2+) and hindbrain (HOXB4+) progenitors with a sharp boundary after 6 days of induction. Following the initial induction, the cells with midbrain identities near the pattern boundary folded inwardly to form a 3D structure, maintaining a distinct boundary between OTX2+ and HOXB4+ zones. To investigate the mechanism of cell fates patterning, we found that the reaction-diffusion of BMP/Noggin played a role in AP regionalization, while differential mechanical stress and cell sorting were unlikely to be involved. Then, we validated our model by investigating the effects of exposure to two known teratogens including valproic acid and isotretinoin. Drug treatment results successfully predicted that valproic acid inhibited the development of both midbrain and hindbrain development while isotretinoin disrupts the normal AP patterning of the midbrain and hindbrain. In conclusion, by integrating engineering approaches and chemically defined culture conditions, we have developed an in vitro AP patterned model of early human midbrain and hindbrain development, and we have revealed its potential to be employed as a high throughput drug discovery system.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3