Priming with FLO8-deficient Candida albicans induces Th1-biased protective immunity against lethal polymicrobial sepsis

Author:

Lv Quan-Zhen,Li De-Dong,Han Hua,Yang Yi-Heng,Duan Jie-Lin,Ma Hui-Hui,Yu Yao,Chen Jiang-Ye,Jiang Yuan-Ying,Jia Xin-MingORCID

Abstract

AbstractThe morphological switch between yeast and hyphae of Candida albicans is essential for its interaction with the host defense system. However, the lack of understanding of host–pathogen interactions during C. albicans infection greatly hampers the development of effective immunotherapies. Here, we found that priming with the C. albicans FLO8-deficient (flo8) mutant, locked in yeast form, protected mice from subsequent lethal C. albicans infection. Deficiency of Dectin-2, a fungus-derived α-mannan recognition receptor, completely blocked flo8 mutant-induced protection. Mechanistically, the flo8 mutant-induced Dectin-2/CARD9-mediated IL-10 production in DCs and macrophages to block thymus atrophy by inhibiting the C. albicans-induced apoptosis of thymic T cells, which facilitated the continuous output of naive T cells from the thymus to the spleen. Continuous recruitment of naive T cells to the spleen enhanced Th1-biased antifungal immune responses. Consequently, depletion of CD4+ T cells or blockade of IL-10 receptor function using specific antibodies in mice completely blocked the protective effects of flo8 mutant priming against C. albicans infection. Moreover, mannans exposed on the surface of the flo8 mutant were responsible for eliciting protective immunity by inhibiting the C. albicans-induced apoptosis of thymic T cells to sustain the number of naive T cells in the spleen. Importantly, priming with the flo8 mutant extensively protected mice from polymicrobial infection caused by cecal ligation and puncture (CLP) by enhancing Th1-biased immune responses. Together, our findings imply that targeting FLO8 in C. albicans elicits protective immune responses against polymicrobial infections and that mannans extracted from the flo8 mutant are potential immunotherapeutic candidate(s) for controlling infectious diseases.

Funder

Shanghai Municipal Education Commission

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Immunology,Immunology and Allergy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3