Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group

Author:

Nunes Abraham, ,Schnack Hugo G.,Ching Christopher R. K.,Agartz Ingrid,Akudjedu Theophilus N.ORCID,Alda Martin,Alnæs DagORCID,Alonso-Lana SilviaORCID,Bauer Jochen,Baune Bernhard T.ORCID,Bøen Erlend,Bonnin Caterina del Mar,Busatto Geraldo F.,Canales-Rodríguez Erick J.,Cannon Dara M.,Caseras Xavier,Chaim-Avancini Tiffany M.,Dannlowski Udo,Díaz-Zuluaga Ana M.,Dietsche Bruno,Doan Nhat Trung,Duchesnay EdouardORCID,Elvsåshagen Torbjørn,Emden Daniel,Eyler Lisa T.ORCID,Fatjó-Vilas Mar,Favre Pauline,Foley Sonya F.,Fullerton Janice M.ORCID,Glahn David C.ORCID,Goikolea Jose M.,Grotegerd Dominik,Hahn Tim,Henry Chantal,Hibar Derrek P.,Houenou Josselin,Howells Fleur M.,Jahanshad Neda,Kaufmann Tobias,Kenney JoanneORCID,Kircher Tilo T. J.,Krug Axel,Lagerberg Trine V.,Lenroot Rhoshel K.,López-Jaramillo Carlos,Machado-Vieira Rodrigo,Malt Ulrik F.,McDonald Colm,Mitchell Philip B.,Mwangi Benson,Nabulsi LeilaORCID,Opel Nils,Overs Bronwyn J.,Pineda-Zapata Julian A.,Pomarol-Clotet Edith,Redlich Ronny,Roberts Gloria,Rosa Pedro G.,Salvador Raymond,Satterthwaite Theodore D.ORCID,Soares Jair C.,Stein Dan J.,Temmingh Henk S.,Trappenberg Thomas,Uhlmann Anne,van Haren Neeltje E. M.,Vieta Eduard,Westlye Lars T.ORCID,Wolf Daniel H.,Yüksel Dilara,Zanetti Marcus V.,Andreassen Ole A.ORCID,Thompson Paul M.,Hajek Tomas

Abstract

AbstractBipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47–67.00, ROC-AUC = 71.49%, 95% CI = 69.39–73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70–60.63). Meta-analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen’s Kappa = 0.83, 95% CI = 0.829–0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/voxelwise neuroimaging data.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3