Ultra-thin light-weight laser-induced-graphene (LIG) diffractive optics

Author:

Lee Younggeun,Low Mun JiORCID,Yang Dongwook,Nam Han Ku,Le Truong-Son Dinh,Lee Seung Eon,Han Hyogeun,Kim Seunghwan,Vu Quang Huy,Yoo HongkiORCID,Yoon Hyosang,Lee Joohyung,Sandeep SuchandORCID,Lee Keunwoo,Kim Seung-WooORCID,Kim Young-JinORCID

Abstract

AbstractThe realization of hybrid optics could be one of the best ways to fulfill the technological requirements of compact, light-weight, and multi-functional optical systems for modern industries. Planar diffractive lens (PDL) such as diffractive lenses, photonsieves, and metasurfaces can be patterned on ultra-thin flexible and stretchable substrates and be conformally attached on top of arbitrarily shaped surfaces. In this review, we introduce recent research works addressed to the design and manufacturing of ultra-thin graphene optics, which will open new markets in compact and light-weight optics for next-generation endoscopic brain imaging, space internet, real-time surface profilometry, and multi-functional mobile phones. To provide higher design flexibility, lower process complexity, and chemical-free process with reasonable investment cost, direct laser writing (DLW) of laser-induced-graphene (LIG) is actively being applied to the patterning of PDL. For realizing the best optical performances in DLW, photon-material interactions have been studied in detail with respect to different laser parameters; the resulting optical characteristics have been evaluated in terms of amplitude and phase. A series of exemplary laser-written 1D and 2D PDL structures have been actively demonstrated with different base materials, and then, the cases are being expanded to plasmonic and holographic structures. The combination of these ultra-thin and light-weight PDL with conventional bulk refractive or reflective optical elements could bring together the advantages of each optical element. By integrating these suggestions, we suggest a way to realize the hybrid PDL to be used in the future micro-electronics surface inspection, biomedical, outer space, and extended reality (XR) industries.

Funder

National Research Foundation of Korea

MAFRA | Korea Forest Service

Ministry of Agriculture, Food and Rural Affairs

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3