Phase space framework enables a variable-scale diffraction model for coherent imaging and display

Author:

Li Zhi1,Luo Xuhao2,Wang Jing1,Yuan Xin3ORCID,Teng DongdongORCID,Song Qiang1,Duan Huigao1

Affiliation:

1. Hunan University

2. Tongji University

3. Westlake University

Abstract

The fast algorithms in Fourier optics have invigorated multifunctional device design and advanced imaging technologies. However, the necessity for fast computations limits the widely used conventional Fourier methods, where the image plane has a fixed size at certain diffraction distances. These limitations pose challenges in intricate scaling transformations, 3D reconstructions, and full-color displays. Currently, the lack of effective solutions makes people often resort to pre-processing that compromises fidelity. In this paper, leveraging a higher-dimensional phase space method, a universal framework is proposed for customized diffraction calculation methods. Within this framework, a variable-scale diffraction computation model is established for adjusting the size of the image plane and can be operated by fast algorithms. The model’s robust variable-scale capabilities and its aberration automatic correction capability are validated for full-color holography, and high fidelity is achieved. The tomography experiments demonstrate that this model provides a superior solution for holographic 3D reconstruction. In addition, this model is applied to achieve full-color metasurface holography with near-zero crosstalk, showcasing its versatile applicability at nanoscale. Our model presents significant prospects for applications in the optics community, such as beam shaping, computer-generated holograms (CGHs), augmented reality (AR), metasurface optical elements (MOEs), and advanced holographic head-up display (HUD) systems.

Funder

Guangzhou Runxin Information Technology Co., Ltd.

Guangzhou Major R&D Funds

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3