A metasurface-based light-to-microwave transmitter for hybrid wireless communications

Author:

Zhang Xin GeORCID,Sun Ya Lun,Zhu Bingcheng,Jiang Wei Xiang,Yu Qian,Tian Han Wei,Qiu Cheng-WeiORCID,Zhang Zaichen,Cui Tie JunORCID

Abstract

AbstractSignal conversion plays an important role in many applications such as communication, sensing, and imaging. Realizing signal conversion between optical and microwave frequencies is a crucial step to construct hybrid communication systems that combine both optical and microwave wireless technologies to achieve better features, which are highly desirable in the future wireless communications. However, such a signal conversion process typically requires a complicated relay to perform multiple operations, which will consume additional hardware/time/energy resources. Here, we report a light-to-microwave transmitter based on the time-varying and programmable metasurface integrated with a high-speed photoelectric detection circuit into a hybrid. Such a transmitter can convert a light intensity signal to two microwave binary frequency shift keying signals by using the dispersion characteristics of the metasurface to implement the frequency division multiplexing. To illustrate the metasurface-based transmitter, a hybrid wireless communication system that allows dual-channel data transmissions in a light-to-microwave link is demonstrated, and the experimental results show that two different videos can be transmitted and received simultaneously and independently. Our metasurface-enabled signal conversion solution may enrich the functionalities of metasurfaces, and could also stimulate new information-oriented applications.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3