Molecularization of Metasurfaces for Multifunctional Ultrafast All‐Optical Terahertz Waves

Author:

Zhou Qiangguo12,Qiu Qinxi1,Li Yongzhen12,Wu Tuntan12,Mao Wangchen12,Gao Yanqing1,Ren Yingjian13,Zhou Wei1,Jiang Lin1,Yao Niangjuan1,Huang Jingguo1,Huang Zhiming12345ORCID

Affiliation:

1. State Key Laboratory of Infrared Physics Shanghai Institute of Technical Physics Chinese Academy of Sciences 500 Yu Tian Road Shanghai 200083 P. R. China

2. University of Chinese Academy of Sciences, Chinese Academy of Sciences 19 Yu Quan Road Beijing 100049 P. R. China

3. Institute of Optoelectronics Fudan University 2005 Songhu Road Shanghai 200438 P. R. China

4. Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub‐Lane Xiangshan Hangzhou 310024 P. R. China

5. Key Laboratory of Space Active Opto‐Electronics Technology Shanghai Institute of Technical Physics Chinese Academy of Sciences 500 Yu Tian Road Shanghai 200083 P. R. China

Abstract

Hybrid metasurfaces incorporated by active materials hold great promise for state‐of‐the‐art terahertz functional devices. However, it is still a major challenge to achieve ultrafast, dynamic, and multifunctional effective control of THz waves via hybrid metasurfaces. Herein, a modulator consisting of split rings and cut‐wires is first demonstrated, with an amplitude of −35.6 dB at 0.524 THz. By embedding semiconductor silicon into specified locations to form a hybrid metasurface, the ultrastrong connectivity of the silicon bridges leads to rapid optical molecularization. Under photoexcitation, the frequency tuning range is 26.7%, the phase shifting reaches 357.5°, and the maximal modulation depth is 94.54%. Taking advantage of the rapid relaxation of photocarriers in the silicon bridges, the ultrafast frequency switching is within 1400 ps. More interestingly, by changing the positions of the silicon bridges, the frequency tuning range is further promoted to 60%, the phase shifting is 353.5°, the modulation depth of 100% is achieved, and the full recovery time is 1600 ps. Furthermore, the underlying mechanism of the ultrafast tuning process is elucidated. This work demonstrates the feasibility of all‐optical‐controlled hybrid metasurface to achieve multifunctional dynamic modulation of THz waves, which has tremendous potential for applications in optical switching, signal processing, and frequency conversion.

Funder

Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3