Nanograin network memory with reconfigurable percolation paths for synaptic interactions

Author:

Lee Hoo-Cheol,Kim Jungkil,Kim Ha-Reem,Kim Kyoung-Ho,Park Kyung-Jun,So Jae-Pil,Lee Jung Min,Hwang Min-Soo,Park Hong-GyuORCID

Abstract

AbstractThe development of memory devices with functions that simultaneously process and store data is required for efficient computation. To achieve this, artificial synaptic devices have been proposed because they can construct hybrid networks with biological neurons and perform neuromorphic computation. However, irreversible aging of these electrical devices causes unavoidable performance degradation. Although several photonic approaches to controlling currents have been suggested, suppression of current levels and switching of analog conductance in a simple photonic manner remain challenging. Here, we demonstrated a nanograin network memory using reconfigurable percolation paths in a single Si nanowire with solid core/porous shell and pure solid core segments. The electrical and photonic control of current percolation paths enabled the analog and reversible adjustment of the persistent current level, exhibiting memory behavior and current suppression in this single nanowire device. In addition, the synaptic behaviors of memory and erasure were demonstrated through potentiation and habituation processes. Photonic habituation was achieved using laser illumination on the porous nanowire shell, with a linear decrease in the postsynaptic current. Furthermore, synaptic elimination was emulated using two adjacent devices interconnected on a single nanowire. Therefore, electrical and photonic reconfiguration of the conductive paths in Si nanograin networks will pave the way for next-generation nanodevice technologies.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3