Photon-counting distributed free-space spectroscopy

Author:

Yu Saifen,Zhang Zhen,Xia Haiyun,Dou Xiankang,Wu Tengfei,Hu Yihua,Li Manyi,Shangguan Mingjia,Wei Tianwen,Zhao Lijie,Wang Lu,Jiang Pu,Zhang Chengjun,You LixingORCID,Tao Leigang,Qiu Jiawei

Abstract

AbstractSpectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances, from quantum descriptions to chemical and biomedical diagnostics. Challenges exist in accurate spectrum analysis in free space, which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere. A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique, incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector. It is suitable for remote spectrum analysis with a range resolution over a wide band. As an example, a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide (CO2) and semi-heavy water (HDO, isotopic water vapor) in 6 km, with a range resolution of 60 m and a time resolution of 10 min. Compared to the methods that obtain only column-integrated spectra over kilometer-scale, the range resolution is improved by 2–3 orders of magnitude in this work. The CO2 and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as ±1.2% and ±14.3%, respectively. This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches, especially in terms of the evolution of complex molecular spectra in open areas.

Funder

National Ten Thousand Talent Program

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3