Abstract
AbstractPhosphorescent carbon nanodots (CNDs) have generated enormous interest recently, and the CND phosphorescence is usually located in the visible region, while ultraviolet (UV) phosphorescent CNDs have not been reported thus far. Herein, the UV phosphorescence of CNDs was achieved by decreasing conjugation size and in-situ spatial confinement in a NaCNO crystal. The electron transition from the px to the sp2 orbit of the N atoms within the CNDs can generate one-unit orbital angular momentum, providing a driving force for the triplet excitons population of the CNDs. The confinement caused by the NaCNO crystal reduces the energy dissipation paths of the generated triplet excitons. By further tailoring the size of the CNDs, the phosphorescence wavelength can be tuned to 348 nm, and the room temperature lifetime of the CNDs can reach 15.8 ms. As a demonstration, the UV phosphorescent CNDs were used for inactivating gram-negative and gram-positive bacteria through the emission of their high-energy photons over a long duration, and the resulting antibacterial efficiency reached over 99.9%. This work provides a rational design strategy for UV phosphorescent CNDs and demonstrates their novel antibacterial applications.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献