Photonic slide rule with metasurfaces

Author:

Yu Feilong,Chen JinORCID,Huang Lujun,Zhao Zengyue,Wang Jiuxu,Jin Rong,Chen Jian,Wang Jian,Miroshnichenko Andrey E.ORCID,Li Tianxin,Li GuanhaiORCID,Chen Xiaoshuang,Lu Wei

Abstract

AbstractAs an elementary particle, a photon that carries information in frequency, polarization, phase, and amplitude, plays a crucial role in modern science and technology. However, how to retrieve the full information of unknown photons in an ultracompact manner over broad bandwidth remains a challenging task with growing importance. Here, we demonstrate a versatile photonic slide rule based on an all-silicon metasurface that enables us to reconstruct incident photons’ frequency and polarization state. The underlying mechanism relies on the coherent interactions of frequency-driven phase diagrams which rotate at various angular velocities within broad bandwidth. The rotation direction and speed are determined by the topological charge and phase dispersion. Specifically, our metasurface leverages both achromatically focusing and azimuthally evolving phases with topological charges +1 and −1 to ensure the confocal annular intensity distributions. The combination of geometric phase and interference holography allows the joint manipulations of two distinct group delay coverages to realize angle-resolved in-pair spots in a transverse manner- a behavior that would disperse along longitudinal direction in conventional implementations. The spin-orbital coupling between the incident photons and vortex phases provides routing for the simultaneous identification of the photons’ frequency and circular polarization state through recognizing the spots’ locations. Our work provides an analog of the conventional slide rule to flexibly characterize the photons in an ultracompact and multifunctional way and may find applications in integrated optical circuits or pocketable devices.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3