Affiliation:
1. State Key Laboratory of Transient Optics and Photonics Xi'an Institute of Optics and Precision Mechanics Chinese Academy of Sciences Xi'an 710119 China
2. University of Chinese Academy of Sciences Beijing 100049 China
Abstract
AbstractEnantiomers (opposite chiral molecules) usually exhibit different effects when interacting with chiral agents, thus the identification and separation of enantiomers are of importance in pharmaceuticals and agrochemicals. Here an optical approach is proposed to enantioselective trapping of multiple pairs of enantiomers by a focused hybrid polarized beam. Numerical results indicate that such a focused beam shows multiple local optical chirality of opposite signs in the focal plane, and can trap the corresponding enantiomers near the extreme value of optical chirality density according to the handedness of enantiomers. The number and positions of trapped enantiomers can be changed by altering the value and sign of polarization orders of hybrid polarized beams, respectively. The key to realizing enantioselective optical trapping of enantiomers is that the chiral optical force exerted on enantiomers in this focused field is stronger than the achiral optical force. The results provide insight into the optical identification and separation of multiple pairs of enantiomers and will find applications in chiral detection and sensing.
Funder
Key Research Program of Frontier Science, Chinese Academy of Sciences
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献