Spectrum projection with a bandgap-gradient perovskite cell for colour perception

Author:

Zhang Mei-Na,Wu Xiaohan,Riaud Antoine,Wang Xiao-Lin,Xie Fengxian,Liu Wen-Jun,Mei Yongfeng,Zhang David Wei,Ding Shi-Jin

Abstract

AbstractOptoelectronic devices for light or spectral signal detection are desired for use in a wide range of applications, including sensing, imaging, optical communications, and in situ characterization. However, existing photodetectors indicate only light intensities, whereas multiphotosensor spectrometers require at least a chip-level assembly and can generate redundant signals for applications that do not need detailed spectral information. Inspired by human visual and psychological light perceptions, the compression of spectral information into representative intensities and colours may simplify spectrum processing at the device level. Here, we propose a concept of spectrum projection using a bandgap-gradient semiconductor cell for intensity and colour perception. Bandgap-gradient perovskites, prepared by a halide-exchanging method via dipping in a solution, are developed as the photoactive layer of the cell. The fabricated cell produces two output signals: one shows linear responses to both photon energy and flux, while the other depends on only photon flux. Thus, by combining the two signals, the single device can project the monochromatic and broadband spectra into the total photon fluxes and average photon energies (i.e., intensities and hues), which are in good agreement with those obtained from a commercial photodetector and spectrometer. Under changing illumination in real time, the prepared device can instantaneously provide intensity and hue results. In addition, the flexibility and chemical/bio-sensing of the device via colour comparison are demonstrated. Therefore, this work shows a human visual-like method of spectrum projection and colour perception based on a single device, providing a paradigm for high-efficiency spectrum-processing applications.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3