High efficiency pure blue perovskite quantum dot light-emitting diodes based on formamidinium manipulating carrier dynamics and electron state filling

Author:

Gao Long,Zhang Yilin,Gou Lijie,Wang Qian,Wang Meng,Zheng Weitao,Wang Yinghui,Yip Hin-Lap,Zhang JiaqiORCID

Abstract

AbstractAchieving high efficiency and stable pure blue colloidal perovskite quantum dot (QD) light-emitting diodes (LEDs) is still an enormous challenge because blue emitters typically exhibit high defect density, low photoluminescence quantum yield (PLQY) and easy phase dissociation. Herein, an organic cation composition modification strategy is used to synthesize high-performance pure blue perovskite quantum dots at room temperature. The synthesized FA-CsPb(Cl0.5Br0.5)3 QDs show a bright photoluminescence with a high PLQY (65%), which is 6 times higher than the undoped samples. In addition, the photophysical properties of the FA cation doping was deeply illustrated through carrier dynamics and first principal calculation, which show lower defects, longer lifetime, and more reasonable band gap structure than undoped emitters. Consequently, pure blue FA-CsPb(Cl0.5Br0.5)3 QDs light-emitting devices were fabricated and presented a maximum luminance of 1452 cd m−2, and an external quantum efficiency of 5.01 % with an emission at 474 nm. The excellent photoelectric properties mainly originate from the enhanced blue QDs emitter and effective charge injection and exciton radiation. Our finding underscores this easy and feasible room temperature doping approach as an alternative strategy to blue perovskite QD LED development.

Publisher

Springer Science and Business Media LLC

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3