Abstract
AbstractElectronic nose (e-nose) technology for selectively identifying a target gas through chemoresistive sensors has gained much attention for various applications, such as smart factory and personal health monitoring. To overcome the cross-reactivity problem of chemoresistive sensors to various gas species, herein, we propose a novel sensing strategy based on a single micro-LED (μLED)-embedded photoactivated (μLP) gas sensor, utilizing the time-variant illumination for identifying the species and concentrations of various target gases. A fast-changing pseudorandom voltage input is applied to the μLED to generate forced transient sensor responses. A deep neural network is employed to analyze the obtained complex transient signals for gas detection and concentration estimation. The proposed sensor system achieves high classification (~96.99%) and quantification (mean absolute percentage error ~ 31.99%) accuracies for various toxic gases (methanol, ethanol, acetone, and nitrogen dioxide) with a single gas sensor consuming 0.53 mW. The proposed method may significantly improve the efficiency of e-nose technology in terms of cost, space, and power consumption.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献