Author:
Wu Guangxing,Zhou Yan,Hong Minghui
Abstract
AbstractOptical microsphere nanoscope has great potential in the inspection of integrated circuit chips for semiconductor industry and morphological characterization in biology due to its superior resolving power and label-free characteristics. However, its resolution in ambient air is restricted by the magnification and numerical aperture (NA) of microsphere. High magnification objective lens is required to be coupled with microsphere for nano-imaging beyond the diffraction limit. To overcome these challenges, in this work, high refractive index hyper-hemi-microspheres with tunable magnification up to 10× are proposed and realized by accurately tailoring their thickness with focused ion beam (FIB) milling. The effective refractive index is put forward to guide the design of hyper-hemi-microspheres. Experiments demonstrate that the imaging resolution and contrast of a hyper-hemi-microsphere with a higher magnification and larger NA excel those of a microsphere in air. Besides, the hyper-hemi-microsphere could resolve ~50 nm feature with higher image fidelity and contrast compared with liquid immersed high refractive index microspheres. With a hyper-hemi-microsphere composed microscale compound lens configuration, sub-50 nm optical imaging in ambient air is realized by only coupling with a 10× objective lens (NA = 0.3), which enhances a conventional microscope imaging power about an order of magnitude.
Funder
Ministry of Education - Singapore
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献