Abstract
AbstractGhost imaging (GI) facilitates image acquisition under low-light conditions by single-pixel measurements and thus has great potential in applications in various fields ranging from biomedical imaging to remote sensing. However, GI usually requires a large amount of single-pixel samplings in order to reconstruct a high-resolution image, imposing a practical limit for its applications. Here we propose a far-field super-resolution GI technique that incorporates the physical model for GI image formation into a deep neural network. The resulting hybrid neural network does not need to pre-train on any dataset, and allows the reconstruction of a far-field image with the resolution beyond the diffraction limit. Furthermore, the physical model imposes a constraint to the network output, making it effectively interpretable. We experimentally demonstrate the proposed GI technique by imaging a flying drone, and show that it outperforms some other widespread GI techniques in terms of both spatial resolution and sampling ratio. We believe that this study provides a new framework for GI, and paves a way for its practical applications.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
250 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献