Affiliation:
1. Changchun University of Science and Technology
2. Shaanxi University of Science and Technology
Abstract
Computational ghost imaging (CGI) allows two-dimensional (2D) imaging by using spatial light modulators and bucket detectors. However, most CGI methods attempt to obtain 2D images through measurements with a single sampling ratio. Here, we propose a CGI method enhanced by degradation models for under-sampling, which can be reflected by results from measurements with different sampling ratios. We utilize results from low-sampling-ratio measurements and normal-sampling-ratio measurements to train the neural network for the degradation model, which is fitted through self-supervised learning. We obtain final results by importing normal-sampling-ratio results into the neural network with optimal parameters. We experimentally demonstrate improved results from the CGI method using degradation models for under-sampling. Our proposed method would promote the development of CGI in many applications.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
Key Research and Development Program of Shaanxi