Abstract
AbstractBirefringent optical elements that work in deep ultraviolet (DUV) region become increasingly important these years. However, most of the DUV optical elements have fixed birefringence which is hard to be tuned. Here, we invent a birefringence-tunable optical hydrogel with mechano-birefringence effect in the DUV region, based on two-dimensional (2D) low-cobalt-doped titanate. This 2D oxide material has an optical anisotropy factor of 1.5 × 10–11 C2 J−1 m−1, larger than maximum value obtained previously, leading to an extremely large specific magneto-optical Cotton-Mouton coefficient of 3.9 × 106 T−2 m−1. The extremely large coefficient enables the fabrication of birefringent hydrogel in a small magnetic field with an ultra-low concentration of 2D oxide material. The hydrogel can stably and continuously modulate 303 nm DUV light with large phase tunability by varying the strain (compression or stretching) from 0 to 50%. Our work opens the door to design and fabricate new proof-of-concept DUV birefringence-tunable element, as demonstrated by optical hydrogels capable of DUV modulation by mechanical stimuli.
Funder
National Natural Science Foundation of China
Guangdong Innovative and Entrepreneurial Research Team Program
National Key R&D Program
Shenzhen Basic Research Project
National Program on Key Basic Research Project of China
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献