Author:
Zhou Xiangbo,Jiang Mingming,Xu Kai,Liu Maosheng,Sha Shulin,Cao Shuiyan,Kan Caixia,Shi Da Ning
Abstract
AbstractEngineering the lasing-mode oscillations effectively within a laser cavity is a relatively updated attentive study and perplexing issue in the field of laser physics and applications. Herein, we report a realization of electrically driven single-mode microlaser, which is composed of gallium incorporated zinc oxide microwire (ZnO:Ga MW) with platinum nanoparticles (PtNPs, d ~ 130 nm) covering, a magnesium oxide (MgO) nanofilm, a Pt nanofilm, and a p-type GaN substrate. The laser cavity modes could resonate following the whispering-gallery mode (WGM) among the six side surfaces by total internal reflection, and the single-mode lasing wavelength is centered at 390.5 nm with a linewidth of about 0.18 nm. The cavity quality factor Q is evaluated to about 2169. In the laser structure, the usage of Pt and MgO buffer layers can be utilized to engineer the band alignment of ZnO:Ga/GaN heterojunction, optimize the p-n junction quality and increase the current injection. Thus, the well-designed device structure can seamlessly unite the electron-hole recombination region, the gain medium, and optical microresonator into the PtNPs@ZnO:Ga wire perfectly. Such a single MW microlaser is essentially single-mode regardless of the gain spectral bandwidth. To study the single-mode operation, PtNPs working as superabsorber can engineering the multimode lasing actions of ZnO:Ga MWs even if their dimensions are typically much larger than that of lasing wavelength. Our findings can provide a straightforward and effective scheme to develop single-mode microlaser devices based on one-dimensional wire semiconductors.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献