Direct neutrino-mass measurement with sub-electronvolt sensitivity
-
Published:2022-02
Issue:2
Volume:18
Page:160-166
-
ISSN:1745-2473
-
Container-title:Nature Physics
-
language:en
-
Short-container-title:Nat. Phys.
Author:
, Aker M., Beglarian A., Behrens J., Berlev A., Besserer U., Bieringer B., Block F., Bobien S., Böttcher M., Bornschein B., Bornschein L., Brunst T., Caldwell T. S., Carney R. M. D., La Cascio L., Chilingaryan S., Choi W., Debowski K., Deffert M., Descher M., Díaz Barrero D., Doe P. J., Dragoun O., Drexlin G., Eitel K., Ellinger E., Engel R., Enomoto S., Felden A., Formaggio J. A., Fränkle F. M., Franklin G. B., Friedel F., Fulst A., Gauda K., Gil W., Glück F., Grössle R., Gumbsheimer R., Gupta V., Höhn T., Hannen V., Haußmann N., Helbing K., Hickford S., Hiller R., Hillesheimer D., Hinz D., Houdy T., Huber A., Jansen A., Karl C., Kellerer F., Kellerer J., Kleifges M., Klein M., Köhler C., Köllenberger L., Kopmann A., Korzeczek M., Kovalík A., Krasch B., Krause H., Kunka N., Lasserre T., Le T. L., Lebeda O., Lehnert B., Lokhov A., Machatschek M., Malcherek E., Mark M., Marsteller A., Martin E. L., Melzer C., Menshikov A., Mertens S.ORCID, Mostafa J., Müller K., Neumann H., Niemes S., Oelpmann P., Parno D. S., Poon A. W. P., Poyato J. M. L., Priester F., Ramachandran S., Robertson R. G. H., Rodejohann W., Röllig M., Röttele C., Rodenbeck C., Ryšavý M., Sack R., Saenz A., Schäfer P., Schaller née Pollithy A., Schimpf L., Schlösser K., Schlösser M.ORCID, Schlüter L., Schneidewind S., Schrank M., Schulz B., Schwemmer A., Šefčík M., Sibille V., Siegmann D., Slezák M., Spanier F., Steidl M., Sturm M., Sun M., Tcherniakhovski D., Telle H. H., Thorne L. A., Thümmler T., Titov N., Tkachev I., Urban K., Valerius K., Vénos D., Vizcaya Hernández A. P., Weinheimer C., Welte S., Wendel J., Wilkerson J. F., Wolf J., Wüstling S., Wydra J., Xu W., Yen Y.-R., Zadoroghny S., Zeller G.
Abstract
AbstractSince the discovery of neutrino oscillations, we know that neutrinos have non-zero mass. However, the absolute neutrino-mass scale remains unknown. Here we report the upper limits on effective electron anti-neutrino mass, mν, from the second physics run of the Karlsruhe Tritium Neutrino experiment. In this experiment, mν is probed via a high-precision measurement of the tritium β-decay spectrum close to its endpoint. This method is independent of any cosmological model and does not rely on assumptions whether the neutrino is a Dirac or Majorana particle. By increasing the source activity and reducing the background with respect to the first physics campaign, we reached a sensitivity on mν of 0.7 eV c–2 at a 90% confidence level (CL). The best fit to the spectral data yields $${{\mbox{}}}{m}_{\nu }^{2}{{\mbox{}}}$$
m
ν
2
= (0.26 ± 0.34) eV2 c–4, resulting in an upper limit of mν < 0.9 eV c–2 at 90% CL. By combining this result with the first neutrino-mass campaign, we find an upper limit of mν < 0.8 eV c–2 at 90% CL.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference90 articles.
1. Fukuda, Y. et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). 2. Ahmad, Q. R. et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002). 3. Petcov, S. T. The nature of massive neutrinos. Adv. High Energy Phys. 2013, 852987 (2013). 4. Agarwal, S. & Feldman, H. A. The effect of massive neutrinos on the matter power spectrum. Mon. Notices Royal Astron. Soc. 410, 1647–1654 (2011). 5. Lesgourgues, J. & Pastor, S. Massive neutrinos and cosmology. Phys. Rep. 429, 307–379 (2006).
Cited by
252 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|